

HDU-003-001114

Seat No. _____

B. Sc. (Biochemistry) (Sem. I) (CBCS) Examination November / December - 2017

101: Physical & Chemical Aspect of Biochemistry (Old Course)

Faculty Code: 003 Subject Code: 001114

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

SECTION - I

- 1 Select the correct answer for the questions from the given 20 choices:
 - (1) Which solution will change red litmus to blue?
 - (a) HCl(aq)
- (b) NaCl(aq)
- (c) $CH_3OH(aq)$
- (d) NaOH(aq)
- (2) When HCl(aq) is exactly neutralized by NaOH(aq), the hydrogen ion concentration in the resulting mixture is
 - (a) always less than the concentration of the hydroxide ions
 - (b) always greater than the concentration of the hydroxide ions
 - (c) always equal than the concentration of the hydroxide ions
 - (d) sometimes greater and sometimes less than the concentration of the hydroxide ions
- (3) A Bronsted-Lowry base is defined as:
 - (a) a proton donor
 - (b) a hydroxide acceptor
 - (c) a proton acceptor
 - (d) a hydroxide donor

(4)	The conjugated base of sulfuric acid is:									
	(a)	SO_3	(b)	HSO_4^{-}						
	(c)	$\mathrm{H_2SO_3}$	(d)	HSO_3^-						
(5)	Pola	ar refers to	_•							
	(a) bonds that have an uneven distribution of char									
	(b)	(b) the formation of uneven size ions								
	(c)	bonds that have an even distribution of charge								
	(d)	even-sized electro negativity in a bond								
(6)	The molecule having one unpaired electron is:									
	(a)	O_2	(b)	CO						
	(c)	NO	(d)	CN^-						
(7)	Which kinds of bonding can be found in a sample of									
	H ₂ O(l) ? (a) Both polar covalent and hydrogen bonds									
	(b)	, ,								
	(c)									
	(d) Nonpolar covalent bonds only									
(8)		Which of the following molecules has a net dipole noment?								
	(a)	CO_2	(b)	CS_2						
	(c)	SO_2	(d)	CCl_4						
(9)										
	(a)	$1 \times 10^{-4} \mathrm{M}$	(b)	$1 \times 10^{-10} \mathrm{M}$						
	(c)	4 M	(d)	10 M						
(10)	Wha	at does a buffer do	?							
	(a)	Keeps the pH of a	a sol	ution constant						
	(b) Keeps the salt concentration of a solution constant									
	(c)	(c) Keeps the cation concentration constant								
	(d) Keeps the anion concentration constant									

2

[Contd...

HDU-003-001114]

(11)	The	Henderson-Hasselbalch equation :
	(a)	allows the graphic determination of the molecular weight of a weak acid from its pH alone.
	(b)	does not explain the behavior of di- or tri-basic weak acids
	(c) employs the same value for pKa for all we	

concentrations of acid and conjugate

(12) Consider a solution which is 0.10 M in CH₃COOH and 0.20 M in NaCH₃COO. Which of the following statements

decreases very slightly.

(a) If a small amount of NaOH is added, the pH

relates the pH of a solution to the pKa and the

- (b) If NaOH is added, the OH ons react with the $\mathrm{CH_3COO}^-$ ions.
- (c) If a small amount of HCl is added, the pH decreases very slightly.
- (d) If HCl is added, the H^+ ions react with $\mathrm{CH_3COOH}$ ions.
- (13) The number of atoms in a mole of any pure substance is equals to
 - (a) its atomic number (b) Avogadro's number
 - (c) Its mass number (d) Its isotopic number
- (14) To prepare 50 mL 2% solution, how much solute do you need?
 - (a) 2 gm

(d)

is true?

- (b) 0.2 gm
- (c) 0.1 mg
- (d) 1 gm
- (15) Calculate the molarity of 18 mg% of glucose solution.
 - (a) 1 M

- (b) 10 mM
- (c) 1 mM
- (d) 100 mM

	the solution?					
	(a)	0.1	(b)	0.01		
	(c)	0.2	(d)	0.02		
(17)	Chamber A contains 40% helium and Chamber B contains 20% helium. Chambers are connected by a tube the molecules are free to cross. Which of the following will occur?					
	(a)	some helium will chamber B	mo	ve from chamber A	to	
	(b)	some helium will chamber A	mo	ve from chamber B	to	
	(c)	helium will remain	n con	centrated in chamber	· A	
	(d)	all of the helium	will	move into chamber B		
(18)	What will happen to an animal cell placed in a normal saline solution?					
	(a)	The cell will shrin	k			
	(b)	The cell will burst	5			
	(c)	The cell will expan	nd			
	(d)	No effect on cell				
(19)	Which of the bond participate in the process of chemisorption ?					
	(a)	dispersion force	(b)	induction force		
	(c)	covalent bond	(d)	none of these		
(20)	Which one of these is the function of reverse osmosis?					
	(a)	To desalinate the	wate	r		
	(b)	both (a) and (c)				
	(c)	produce pure wate	r for	industries		
	(d)	None				
HDU-003-	-0011	14]	4]	Contd.	

(16) $0.2~\mathrm{M}$ solution contains how many moles in 500 ml of

SECTION - II

- 2 (a) Answer any three of the following questions: $2\times3=6$
 - (1) How will you define Lewis acid and base?
 - (2) Write the types of covalent bond with examples.
 - (3) Calculate the concentration of OH⁻ in a solution in which concentration of H⁺ is 2×10^{-5} M.
 - (4) Sea water contains roughly 28.0 g of NaCl per liter. What is the molarity of sodium chloride in sea water?
 - (5) Describe reverse osmosis technology in water purification.
 - (6) Give the difference between strong acid and weak acid.
 - (b) Answer any three of the following questions: $3\times3=9$
 - (1) What do you mean by Redox reaction?
 - (2) Give the importance of hydrophobic interaction.
 - (3) Derive Handerson-Hasselbalch equation for pH.
 - (4) Define solution and write down the types of percent solution.
 - (5) List applications of viscosity measurements.
 - (6) Calculate the pH of the solution that results from the addition of 0.040 moles of HNO $_3$ to a buffer made by combining 0.500 L of 0.380 M HC $_3$ H $_5$ O $_2$ (K $_a$ = 1.30 × 10 $^{-5}$) and 0.500 L of 0.380 M NaC $_3$ H $_5$ O $_2$.
 - (c) Answer any two of the following questions: $5\times2=10$
 - (1) Explain Arrhenius acid base theory with any example and write the properties of acid and base.
 - (2) Describe resonance bond with examples.

- (3) What is buffer? Explain Hemoglobin as a biological buffer.
- (4) Define molar and normal solution. Calculate the molarity and normality of 3.7 mg/10 ml of Ca(OH)_2 solution (M.Wt = 74)
- (5) Write about factors affecting process of diffusion.
- 3 (a) Answer any three of the following questions: $2\times3=6$
 - (1) Explain oxidation number. Write any two examples of it.
 - (2) Give characteristic features of ionic bond.
 - (3) Explain pH Scale.
 - (4) How much grams of fructose do you need to prepare 100ppm solution?
 - (5) Define adsorption and give examples of adsorbents.
 - (6) Describe the role of osmosis in living system.
 - (b) Answer any three of the following questions: $3\times3=9$
 - (1) Explain conjugated acid base with any one example.
 - (2) Write in short about coordination covalent bond.
 - (3) Aspirin has a pK_a of 3.4. What is the ratio of A to HA in :
 - (a) the blood (pH = 7.4)
 - (b) the stomach (pH = 1.4)
 - (4) What do you understand by stock and working solution? Write its significance.
 - (5) How respiratory gases oxygen and carbon dioxide are transported across the biological membranes?
 - (6) Prepare 100 ml of 0.5 M solution of NaCl.

- (c) Answer any two of the following questions: $5\times2=10$
 - (1) Explain titration curve of strong acid into weak base with any one example.
 - (2) With a labeled diagram, explain the bonds involved in tertiary structure of protein.
 - (3) Explain pH meter in detail.
 - (4) Prepare 20 mL of 5mg% solution from the 2M stock solution of NaCl.
 - (5) Explain applications of adsorption.